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Abstract. A 3-D novel double-convection chaotic system with three nonlinearities is proposed 

in this research work. The dynamical properties of the new chaotic system are described in terms 

of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability 

analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with 

unknown parameters are achieved via nonlinear controllers and the results are established using 

Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel 

chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel 

chaotic attractor show agreement with the numerical simulations. 

1.  Introduction 
A chaotic system is commonly defined as a nonlinear dynamical system that is highly sensitive to even 

small perturbations in its initial conditions [1-4]. In other words, a chaotic system is a nonlinear 

dynamical system with at least one positive Lyapunov exponent. In the last two decades, many new 

chaotic systems have been discovered such as Tigan system [5], Li system [6], Jafari system [7], 

Sundarapandian systems [8-9], Pehlivan system [10], Vaidyanathan systems [11-14], Molaie systems 

[15], Tacha system [16], Sampath system [17], Volos system [18], Wang system [19], Pham systems 

[20-22], etc.  

Chaos theory has several applications in science and engineering such as oscillators [23-25], 

chemical reactors [26-28], Tokamak systems [29], voice encryption [30], population biology [31-32], 

robotics [33-34], neural networks [35-36], memristors [37-38], secure communication system [39-41] 

etc. 

http://creativecommons.org/licenses/by/3.0
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The problem of chaos control of a chaotic system is to find a state feedback control law to stabilize 

a chaotic system around its unstable equilibrium [1-4]. The problem of synchronization of two chaotic 

systems deals with synchronizing identical state trajectories of a pair of chaotic systems called master 

and slave systems asymptotically [1-4]. Some popular methods for chaos control and synchronization 

of chaotic systems can be listed as an active control, adaptive control, backstepping control, fuzzy 

control, sliding mode control etc., which are outlined in [1-4].  

Rucklidge chaotic system is a popular model in mechanics for nonlinear double convection [42].  

When the convection takes place in a fluid layer rotating uniformly about a vertical axis and in the limit 

of tall thin rolls, convection in an imposed vertical magnetic field and convection in a rotating fluid layer 

are both modeled by Rucklidge’s 3-D system of differential equations, which produces chaotic solutions.   

In this work, we modify the dynamics of Rucklidge system [42] and derive a new double-convection 

chaotic system with an absolute nonlinearity and two quadratic nonlinearities. The phase portraits of the 

new chaotic system are displayed in Section 2, and the dynamical properties of the new chaotic system 

such as dissipativity, equilibria analysis, Lyapunov exponents, Kaplan-Yorke dimension, etc. are 

analyzed in Section 3. Lyapunov exponents of the new chaotic system are obtained as 1 0.4684,L =  

2 0L = and 3 3.6684.L = − The Kaplan-Yorke dimension of the new system is found as 2.1277.
KY

D =  

Adaptive control and synchronization of the new chaotic system with unknown system parameters 

are discussed in Sections 4 and 5, respectively. The main adaptive control results derived in this work 

are established using Lyapunov stability theory [43]. Furthermore, an electronic circuit realization of 

the new chaotic system is presented in detail in Section 6. The circuit experimental results of the new 

chaotic attractor show agreement with the numerical simulations. Section 7 contains the conclusions. 

2.  A new nonlinear double-convection chaotic system 
In fluid mechanics modeling, cases of two-dimensional convection in a horizontal layer of Boussinesq 

fluid with lateral constraints were considered by Rucklidge [42].  When the convection takes place in a 

fluid layer rotating uniformly about a vertical axis and in the limit of tall thin rolls, convection in an 

imposed vertical magnetic field and convection in a rotating fluid layer are both modeled by a new third-

order set of ordinary differential equations, which produces chaotic solutions. 

The Rucklidge chaotic system is described by the 3-D dynamics   

 

1 1 2 2 3

2 1

2

3 3 2

x ax bx x x

x x

x x x

 = − + −


=


= − +

ɺ

ɺ

ɺ

       (1) 

where 1 2 3, ,x x x are state variables and ,a b are positive constants. In [42], it was established that the 

system (1) is chaotic for 2.2a = and 6.7.b =  

In this work, we modify the dynamics of Rucklidge chaotic system (1) and obtain a new dynamics 

for nonlinear double convection as 

  

1 1 2 2 2 3

2 1

2

3 3 2

| |x ax bx x x x

x x

x x x

 = − + − −


=


= − +

ɺ

ɺ

ɺ

      (2) 

where 1 2 3, ,x x x are state variables and ,a b are positive constants. 

In this paper, we show that the system (2) is chaotic for the parameter values 

  2.2,   18a b= =         (3) 

For numerical simulations, we take the initial values of the system (2) as 

  1 2 3(0) 0.2,   (0) 0.2,   (0) 0.2x x x= = =      (4) 
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Figure 1 shows the phase portraits strange attractor of the new double-convection chaotic system (2) 

for the parameter values (3) and initial conditions (4).  Figure 1 (a) shows the 3-D phase portrait of the 

nonlinear double-convection chaotic system (2). Figures 1 (b)-(c) show the projections of the strange 

attractor of the nonlinear double-convection chaotic system (2) in ( )1 2, ,x x  ( )2 3,x x and ( )1 3,x x

coordinate planes, respectively. 

 

 

Figure 1. Phase portraits of the new chaotic system (2) for 2.2,  18a b= =    

3.  Dynamical properties of the new chaotic system 

In this section, we take the parameter values as in the chaotic case, i.e. 2.2a =  and 18.b =  

3.1.  Dissipativity 

If V denotes any volume along the flow of the new chaotic system (2), then      

31 2

1 2 3

1 0
xx x

V a
x x x

µ
∂∂ ∂

∇ ⋅ = + + = − − = − <
∂ ∂ ∂

ɺɺ ɺ
     (5) 

where 1 0.aµ = + >   

This shows that .V Vµ= −ɺ  Integrating, we get 

 ( )( ) exp (0)V t t Vµ= −        (6) 
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Thus, the new chaotic system (2) is dissipative. Hence, the system limit sets are ultimately confined 

into a specific limit set of zero volume, and the asymptotic motion of the novel chaotic system (2) settles 

into a strange attractor of the system. 

3.2.  Equilibrium points 

The equilibrium points of the system (2) are obtained by solving the system of equations 
2

1 2 2 3 1 3 2
0,   0,   0ax bx x x x x x− + − = = − + =      (7) 

We take the parameter values as in the chaotic case (3), i.e. 2.2a =  and 18.b =  

A simple calculation shows that the new chaotic system (2) has three equilibrium points given by  

 
0

0

0 ,

0

E

 
 =  
  

  
1

0

4.1231 ,

17

E

 
 =  
  

  
2

0

4.3589

19

E

 
 = − 
  

    (8) 

 

To check the stability of the equilibrium points, we calculate the Jacobian of the system (2) as 

   

2 3 2

2

sign( )

( ) 1 0 0

0 2 1

a b x x x

J x

x

− − − − 
 =  
 − 

    (9) 

Let 0 0( ),J J E= 1 1( )J J E=  and 2 2( ).J J E=  We find that 0J has the eigenvalues  

 1 1,λ = −  2 5.4829,λ = −  3 3.2829λ =     (10) 

This shows that the equilibrium point 0E  is a saddle point. Hence, it is unstable. 

Next, we find that 1J  has the eigenvalues  

   
1 2,3

4.4335,   0.6168 2.6997iλ λ= − = ±     (11) 

This shows that the equilibrium point 1E  is a saddle-focus. Hence, it is unstable. 

We also find that 2J has the eigenvalues 

 
1 2,3

4.5512,   0.6756 2.8095iλ λ= − = ±     (12) 

This shows that the equilibrium point 2E  is a saddle-focus. Hence, it is unstable. 

3.3.  Lyapunov exponents and Kaplan-Yorke dimension 

The parameters of the new system (2) are taken as 2.2a =  and 18.b =  The initial state of the system 

(2) is taken as (0) 0.2
i

x =  for  1,2,3.i =  

The Lyapunov exponents of the system (2) are calculated using Wolf’s algorithm [44] (see Figure 2) 

as 

   1 2 30.4684,   0,   3.6684.L L L= = = −     (13) 
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Figure 2. Lyapunov exponents of the new chaotic system (2) 

  

The Kaplan-Yorke dimension of the new chaotic system (2) is calculated as 

 1 2

3

2 2.1277
KY

L L
D

L

+
= + =      (14) 

3.4.  Symmetry and invariance 

The new chaotic system (2) is invariant under the coordinate transformation 

 1 2 3 1 2 3( , , ) ( , , )x x x x x x− −֏      (15) 

This shows that the chaotic system (2) has a rotation symmetry about the 3x − axis. Hence, every 

non-trivial trajectory of the system (2) must have a twin trajectory.  

Also, the 3x − axis is invariant under the flow of the new chaotic system (2). This invariant flow is 

characterized by the 1-D dynamics 3 3x x= −ɺ which is exponentially stable. 

4.  Adaptive control of the new chaotic system 
In this section, we consider the controlled new chaotic system given by 

  

1 1 2 2 2 3 1

2 1 2

2

3 3 2 3

| |x ax bx x x x u

x x u

x x x u

 = − + − − +


= +


= − + +

ɺ

ɺ

ɺ

      (16) 

where 1 2 3, ,  x x x are the states and ,  a b are unknown system parameters.    

We consider the adaptive controller defined by  

 

1 1 2 2 2 3 1 1

2 1 2 2

2

3 3 2 3 3

ˆˆ( ) ( ) | |u a t x b t x x x x k x

u x k x

u x x k x

 = − + + −


= − −


= − −

     (17) 
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where ˆˆ( ), ( )a t b t  are estimates of  ,a b   respectively and 1 2 3, ,k k k  are positive constants. 

Substituting (17) into (16), we obtain the closed-loop system 

  

1 1 2 1 1

2 2 2

3 3 3

ˆˆ[ ( )] [ ( )]x a a t x b b t x k x

x k x

x k x

 = − − + − −


= −
 = −

ɺ

ɺ

ɺ

     (18) 

We define parameter estimation errors as follows: 

 
ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

= −


= −
        (19) 

Using (19), the closed loop system (18) reduces to 

  

1 1 2 1 1

2 2 2

3 3 3

a b
x e x e x k x

x k x

x k x

= − + −


= −
 = −

ɺ

ɺ

ɺ

       (20) 

Differentiating (19) with respect to ,t  we get 

 
ˆ( ) ( )

ˆ( ) ( )

a

b

e t a t

e t b t

 = −


= −

ɺɺ

ɺ
ɺ

        (21) 

Next, we consider the Lyapunov function defined by 

 ( ) ( )2 2 2 2 2

1 2 3 1 2 3

1
, , , ,

2
a b a bV x x x e e x x x e e= + + + +     (22) 

which is positive definite on 
5.R  

Differentiating V along the trajectories of (20) and (21), we obtain 

  ( ) ( )2 2 2 2

1 1 2 2 3 3 1 1 2
ˆˆ

a b
V k x k x k x e x a e x x b= − − − + − − + −

ɺɺɺ     (23) 

In view of (23), we take the parameter update law as  

  

2

1

1 2

ˆ

ˆ

a x

b x x

 = −


=

ɺ

ɺ
        (24) 

Next, we prove the main theorem of this section. 

Theorem 1. The new chaotic system (16) with unknown parameters is globally and asymptotically 

stabilized by the adaptive control law (17) and the parameter update law (24), where 1 2 3, ,k k k  are 

positive constants.  

 Proof.  The Lyapunov function V  defined by (22) is quadratic and positive definite on 
5.R   

 By substituting the parameter update law (24) into (23), we obtain the time-derivative of V as 

  
2 2 2

1 1 2 2 3 3
V k x k x k x= − − −ɺ        (25) 

which is negative semi-definite on 
5.R  

Thus, by Barbalat’s lemma [43], it follows that the closed-loop system (20) is globally asymptotically 

stable for all initial conditions 
3(0) .x ∈R  

Hence, we conclude that the new chaotic system (16) with unknown parameters is globally and 

asymptotically stabilized by the adaptive control law (17) and the parameter update law (24), where 

1 2 3, ,k k k are positive constants. This completes the proof.      
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For numerical simulations, we take the gain constants as 10
i

k = for 1,2,3.i =  

We take the parameter values as in the chaotic case (3), i.e. 2.2a = and 18.b =   

We take the initial conditions of the states of the new chaotic system (16) as 1(0) 18.3,x =

2(0) 11.7x = and 3 (0) 16.4.x =   

We take the initial conditions of the parameter estimates as ˆ(0) 7.5a = and ˆ(0) 6.8.b =  

 Figure 3 shows the time-history of the states of the new chaotic system (16) after the implementation 

of the adaptive control law (17) and the parameter update law (24). 

 

 

 Figure 3. Time-history of the controlled state trajectories of the new chaotic system 

5.  Adaptive synchronization of the new chaotic system 
In this section, we use the adaptive control to synchronize a pair of identical new chaotic systems with 

unknown state parameters. 

As the master system, we consider the new chaotic system given by 

1 1 2 2 2 3

2 1

2

3 3 2

| |x ax bx x x x

x x

x x x

 = − + − −


=


= − +

ɺ

ɺ

ɺ

      (26) 

where 1 2 3, ,x x x are the states and ,a b are unknown parameters. 

As the slave system, we consider the new chaotic system given by 

1 1 2 2 2 3 1

2 1 2

2

3 3 2 3

| |y ay by y y y u

y y u

y y y u

 = − + − − +


= +


= − + +

ɺ

ɺ

ɺ

      (27) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are adaptive controls to be designed. 

The synchronization error between the systems (26) and (27) is defined as 

  

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −


= −
 = −

        (28) 

The error dynamics is obtained as 
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1 1 2 2 2 2 3 2 3 1

2 1 2

2 2

3 3 2 2 3

| | | |e ae be y x y y x x u

e e u

e e y x u

 = − + − + − + +


= +


= − + − +

ɺ

ɺ

ɺ

    (29) 

We consider the adaptive control defined by 

  

1 1 2 2 2 2 3 2 3 1 1

2 1 2 2

2 2

3 3 2 2 3 3

ˆˆ( ) ( ) | | | |u a t e b t e y x y y x x k e

u e k e

u e y x k e

 = − + − + − −


= − −


= − + −

    (30) 

where 1 2 3, ,k k k are positive gain constants. 

Substituting (30) into (29), we obtain the closed-loop system 

 

1 1 2 1 1

2 2 2

3 3 3

ˆˆ[ ( )] [ ( )]e a a t e b b t e k e

e k e

e k e

 = − − + − −


= −
 = −

ɺ

ɺ

ɺ

     (31) 

We define the parameter estimation errors as 

 
ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

= −


= −
        (32) 

Using (32), we can simplify (31) as 

 

1 1 2 1 1

2 2 2

3 3 3

a b
e e e e e k e

e k e

e k e

= − + −


= −
 = −

ɺ

ɺ

ɺ

       (33) 

Differentiating (32) with respect to ,t we obtain 

 
ˆ( ) ( )

ˆ( ) ( )

a

b

e t a t

e t b t

 = −


= −

ɺɺ

ɺ
ɺ

        (34) 

Next, we consider the Lyapunov function defined by 

 ( ) ( )2 2 2 2 2

1 2 3 1 2 3

1
, , , ,

2
a b a b

V e e e e e e e e e e= + + + +     (35) 

which is positive definite on 
5.R  

Differentiating V along the trajectories of (33) and (34), we obtain 

  ( ) ( )2 2 2 2

1 1 2 2 3 3 1 1 2
ˆˆ

a b
V k e k e k e e e a e e e b= − − − + − − + −

ɺɺɺ     (36) 

In view of (36), we take the parameter update law as  

  

2

1

1 2

ˆ

ˆ

a e

b e e

 = −


=

ɺ

ɺ
        (37) 

Next, we prove the main theorem of this section. 

Theorem 2. The new chaotic systems (26) and (27) with unknown parameters are globally and 

asymptotically stabilized by the adaptive control law (30) and the parameter update law (37), where 

1 2 3, ,k k k  are positive constants.  

 Proof.  The Lyapunov function V  defined by (35) is quadratic and positive definite on 
5.R   
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 By substituting the parameter update law (37) into (36), we obtain the time-derivative of V as 

  
2 2 2

1 1 2 2 3 3
V k e k e k e= − − −ɺ        (38) 

which is negative semi-definite on 
5.R  

Thus, by Barbalat’s lemma [43], it follows that the closed-loop system (33) is globally asymptotically 

stable for all initial conditions 
3(0) .e ∈R  

Hence, we conclude that the new chaotic systems (26) and (27) with unknown parameters are 

globally and asymptotically stabilized by the adaptive control law (30) and the parameter update law 

(37), where 1 2 3, ,k k k are positive constants. This completes the proof.     

For numerical simulations, we take the gain constants as 10
i

k = for 1,2,3.i =  

We take the parameter values as in the chaotic case (3), i.e. 2.2a = and 18.b =   

We take the initial conditions of the states of the master system (26) as 1(0) 20.2,x = 2(0) 6.4x =

and 3 (0) 15.1.x =  

We take the initial conditions of the states of the slave system (27) as 1(0) 18.5,y = 2(0) 12.3y =

and 3(0) 10.7.y =  

We take the initial conditions of the parameter estimates as ˆ (0) 16.3a = and ˆ(0) 5.8.b =  

Figure 4 shows the synchronization of the states of the new chaotic systems (26) and (27).  

Figure 5 shows the time-history of the synchronization errors 1 2 3, , .e e e  

 

 
Figure 4. Complete synchronization of the new chaotic systems 
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Figure 5. Time-history of the synchronization errors for the new chaotic systems 

6.  Circuit implementation of the new double-convection chaotic system 
 

Electronic circuit provides an alternative approach to exploring new chaotic system (2). In this 

section, we design and build an electronic circuit of the system (2) as shown in Figure 6. In more details,  

there are three integrators (U1A, U3A, U5A), which are created by the operational amplifiers. The circuit 

consists of simple electronic elements, such as resistors, capacitors, operational amplifiers, analog 

devices AD633 multipliers and two diodes  (1N4148),  which provide the signal  |X2|. By applying 

Kirchhoff’s laws to the circuit in Figure 6, its circuital equations are derived in the following form: 

 















+−=

=

−+−−=

2

2

7363

3

1

52

2

32

41

2

31

2

21

1

11

1

10

11

1

10

11
||

11

x
RC

z
RC

x

x
RC

x

xx
RC

x
RC

x
RC

x
RC

x

ɺ

ɺ

ɺ

     (39) 

 

We choose the values of the circuital elements as 

 









===

Ω============

Ω==Ω=Ω=

nFCCC

KRRRRRRRRRRRR

KRRRKR

10

10

1,555,54.4

321

1615141312111098652

7431

   (40) 
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The supplies of all active devices are 15± volt. The proposed circuit is implemented in the electronic 

simulation package MultiSIM. The obtained phase portraits are shown in Figure 1. There is a good 

agreement between these circuital results and the theoretical ones (see Figures. 7–9). 

7.  Conclusions 

This work proposed a novel three-dimensional double-convection chaotic system with three 

nonlinearities. The dynamical properties of the new chaotic system were discussed in detail. The 

qualitative properties included phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, 

dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new 

chaotic system with unknown parameters were achieved via nonlinear controllers and Lyapunov 

stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system was 

proposed and the circuit experimental results of the 3-D novel chaotic attractor showed good agreement 

with the numerical simulations.   
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Figure 6 Schematic of the proposed new chaotic system by using MultiSIM  
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Figure 7 2-D projection of the new chaotic system on the (x1, x2) plane 

 

 
 

Figure 8 2-D projection of the new chaotic system on the (x1, x3) plane 
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Figure 9 2-D projection of the new chaotic system on the (x2, x3) plane 
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