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Abstract. A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. 

The dynamical properties of the new chaotic system are described in terms of phase portraits, 

equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show 

that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is 

dissipative in nature. As an engineering application, adaptive synchronization of identical new 

chaotic attractors is designed via nonlinear control and Lyapunov stability theory.  Furthermore, 

an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the 

feasibility of the theoretical chaotic attractor model. 

1.  Introduction 
Chaos theory deals with nonlinear dynamical systems that are highly sensitive to initial conditions, 

which is also characterized by the existence of a positive Lyapunov chaos exponent [1-2]. In the last 

few decades, chaotic and hyperchaotic systems have attracted the interest of the engineering and science 

community because of their wide applications in many scientific and engineering fields [3-18].  

Motivated by the research on chaotic systems with dissipative chaotic attractors with quadratic 

nonlinearities [19-24], we prove a new 3-D new chaotic system with two quadratic nonlinearities in this 

paper. The new chaotic system is dissipative and it has three unstable equilibrium points. 

Section 2 describes the new chaotic system and details the properties such as Lyapunov exponents 

and Kaplan-Yorke dimension. Section 3 describes the adaptive synchronization of the new chaotic 

system with unknown parameters. Furthermore, an electronic circuit realization of the new chaotic 
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system is presented in detail in Section 4. The circuit experimental results of the new chaotic attractor 

show agreement with the numerical simulations. Section 5 contains the conclusions of this work. 

2.  A new chaotic system with two quadratic nonlinearities 
In this paper, we announce a new 3-D chaotic system with two quadratic nonlinearities given by   

1 2 1 3

2 1 3

2

3 1 3

( )

50

x a x x x

x x x

x bx x

 = − −


=


= − −

ɺ

ɺ

ɺ

       (1) 

where 1 2 3, ,x x x are state variables and ,a b are positive constants.  

In this paper, we show that the system (1) is chaotic for the parameter values 

  3,   1a b= =         (2) 

For numerical simulations, we take the initial values of the system (1) as 

  1 2 3(0) 0.2,   (0) 0.2,   (0) 0.2x x x= = =      (3) 

Figure 1 shows the phase portraits strange attractor of the new chaotic system (1) for the parameter 

values (2) and initial conditions (3).  Figure 1 (a) shows the 3-D phase portrait of the new chaotic system 

(1). Figures 1 (b)-(c) show the projections of the new chaotic system (1) in ( )1 2, ,x x  ( )2 3,x x and 

( )1 3,x x coordinate planes, respectively. 

 

 

Figure 1. Phase portraits of the new chaotic system (1) for 3,  1a b= =    

 

For the rest of this section, we take the parameter values as in the chaotic case (2). The equilibrium 

points of the new chaotic system (1) are obtained by solving the system of equations 
2

2 1 3 1 3 1 3( ) 0,   0,   50 0a x x x x x bx x− − = = − − =       (4) 
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Solving the equations in (4) we obtain the equilibrium points of the system (1) as 

 1

0

50 / 3 ,

50

E

 
 

=  
  

   2

50

50 ,

0

E

 
 

=  
 
  

    3

50

50

0

E

 −
 

= − 
 
  

    (5) 

It is easy to show that 1E is a saddle point, while 2E and 3E are saddle-focus points. 

For the parameter values as in the chaotic case (2) and the initial state as in (3), the Lyapunov 

exponents of the new 3-D system (2) are determined using Wolf’s algorithm as 

1 2 31.0676,   0,   5.0676L L L= = = −       (6) 

Since 1 0,L > the new 3-D system (1) is chaotic. Thus, the system (1) exhibits a chaotic attractor. 

Also, we note that the sum of the Lyapunov exponents in (6) is negative. This shows that the new 3-D 

chaotic system (1) is dissipative. 

The Kaplan-Yorke dimension of the new 3-D system (1) is determined as 

 1 2

3

2 2.2107,
| |

KY

L L
D

L

+
= + =       (7) 

which indicates the complexity of the new chaotic system (1). 

Figure 2 shows the Lyapunov exponents of the new chaotic system (1) with a strange attractor.  

 

Figure 2. Lyapunov exponents of the new chaotic system (1) for 3,   1a b= =  

3.  Adaptive synchronization of the new chaotic systems   
In this section, we devise adaptive controller so as to synchronize the respective states of identical new 

chaotic systems with unknown parameters considered as master and slave systems respectively. As the 

master system, we consider the new chaotic system given by 

1 2 1 3

2 1 3

2

3 1 3
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where 1 2 3, ,x x x are the states and ,a b are unknown parameters. 

As the slave system, we consider the new chaotic system given by 

1 2 1 3 1

2 1 3 2

2

3 1 3 3

( )

50

y a y y y u

y y y u

y by y u

 = − − +


= +


= − − +

ɺ

ɺ

ɺ

       (9) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are adaptive controls to be designed. 

The synchronization error between the systems (8) and (9) is defined as 

  

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −


= −
 = −

        (10) 

The error dynamics is obtained as 

 

1 2 1 3 1

2 1 3 1 3 2

2 2

3 1 1 3 3

( )

( )

e a e e e u

e y y x x u

e b y x e u

 = − − +


= − +


= − − − +

ɺ

ɺ

ɺ

      (11) 

We consider the adaptive control defined by 

   

1 2 1 3 1 1

2 1 3 1 3 2 2

2 2

3 1 1 3 3 3

ˆ( )( )

ˆ( )( )

u a t e e e k e

u y y x x k e

u b t y x e k e

 = − − + −


= − + −


= − + −

      (12) 

where 1 2 3, ,k k k are positive gain constants. 

Substituting (12) into (11), we obtain the closed-loop system 

 

1 2 1 1 1

2 2 2

2 2

3 1 1 3 3

ˆ[ ( )]( )

ˆ[ ( )]( )

e a a t e e k e

e k e

e b b t y x k e

 = − − −


= −


= − − − −

ɺ

ɺ

ɺ

      (13) 

We define the parameter estimation errors as 

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

= −


= −
        (14) 

Using (14), we can simplify (13) as 

1 2 1 1 1

2 2 2

2 2

3 1 1 3 3

( )

( )
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Differentiating (14) with respect to ,t we obtain 

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a t

e t b t

 = −


= −

ɺɺ

ɺ
ɺ

        (16) 

Next, we consider the Lyapunov function defined by 

 ( ) ( )2 2 2 2 2

1 2 3 1 2 3

1
, , , ,

2
a b a bV e e e e e e e e e e= + + + +     (17) 
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which is positive definite on 
5.R  

Differentiating V along the trajectories of (15) and (16), we obtain 

  
2 2 2 2 2

1 1 2 2 3 3 1 2 1 3 1 1
ˆˆ( ) ( )   

a b
V k e k e k e e e e e a e e y x b  = − − − + − − + − − −    

ɺɺɺ   (18) 

In view of (18), we take the parameter update law as  

  

( )

1 2 1

2 2

3 1 1

ˆ ( )

ˆ

a e e e

b e y x

 = −


= − −

ɺ

ɺ
       (19) 

Next, we prove the main theorem of this section. 

Theorem 2. The new chaotic systems (8) and (9) with unknown parameters are globally and 

asymptotically stabilized by the adaptive control law (12) and the parameter update law (19), where 

1 2 3, ,k k k  are positive constants.  

 Proof.  The Lyapunov function V  defined by (17) is quadratic and positive definite on 
5.R   

 By substituting the parameter update law (19) into (18), we obtain the time-derivative of V as 

  
2 2 2

1 1 2 2 3 3V k e k e k e= − − −ɺ        (20) 

which is negative semi-definite on 
5.R  

Thus, by Barbalat’s lemma [25], it follows that the closed-loop system (15) is globally asymptotically 

stable for all initial conditions 
3(0) .e ∈R  

Hence, we conclude that the new chaotic systems (8) and (9) with unknown parameters are globally 

and asymptotically stabilized by the adaptive control law (12) and the parameter update law (19), where 

1 2 3, ,k k k are positive constants.  

This completes the proof.         

For numerical simulations, we take the gain constants as  

 1 2 310,   10,   10k k k= = =        (21) 

We take the parameter values as in the chaotic case (2), i.e.  

3,   1a b= =         (22) 

We take the initial conditions of the states of the master system (8) as  

 1 2 3(0) 5.2,   (0) 8.9,   (0) 3.1x x x= = =      (23) 

We take the initial conditions of the states of the slave system (9) as   

1 2 3(0) 12.5,   (0) 2.1,   (0) 14.7y y y= = =      (24) 

We take the initial conditions of the parameter estimates as    

 ˆˆ(0) 7.3,   (0) 10.6a b= =        (25) 

Figure 3 shows the synchronization of the states of the new chaotic systems (8) and (9). Figure 4 

shows the time-history of the synchronization errors 1 2 3, , .e e e  
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Figure 3. Complete synchronization of the new chaotic systems 

 

Figure 4. Time-history of the synchronization errors for the new chaotic systems 

  



7

1234567890‘’“”

IORA-ICOR 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 332 (2018) 012048 doi:10.1088/1757-899X/332/1/012048

 

 

 

 

 

 

4.  Circuit implementation of the new chaotic system 
The electronic circuit modeling the new chaotic system (1) is realized by using off-the-shelf components 

such as resistors, capacitors, operational amplifiers, and multipliers. The circuit electronic of a new 

chaotic system (1) by MultiSIM is shown in Figure 5. In this work, a linear scaling is considered as 

follows: 









−−=
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     (26) 

The circuit equation corresponding to each state of the scaled system (26) using Kirchhoff’s laws can 

be obtained as: 















−−=

=

−−=

3

63

2

1

53

1

73

3

31

42

2

3

31

1

21

2

11

1

111

1

111

x
RC

x
RC

V
RC

x

xx
RC

x

x
RC

x
RC

x
RC

x

ɺ

ɺ

ɺ

              (27) 

where the variables x1, x2, and x3 are the outcomes of the integrators U1A, U3A, U5A.  

We choose R2 = R8 = R9 = R10 = R11 = 100 kΩ, R1 = 50 KΩ, R3  = R6 = 300 KΩ, R4 = 120 KΩ, R5 = 60 

KΩ, R7 = 30 KΩ, C1 = C2 = C3 = 3.2 nF. The supplies of all active devices are ±15 Volt. The designed 

electronic circuit is implemented in MultiSIM. The obtained results are presented in Figures 6 (a) - (c), 

which show the phase portraits of the chaotic attractor in x1-x2, x2-x3 and x1-x3 planes, respectively. It is 

easy to see a good agreement between the circuital attractor and theoretical attractor. 

 

5.  Conclusions 
This work announced a new chaotic system with two quadratic nonlinearities. First, the qualitative 

properties of the new chaotic system are reported. Dynamical behaviors of the new chaotic system with 

two quadratic nonlinearities are investigated through equilibrium points, projections of chaotic 

attractors, Lyapunov exponents, and Kaplan–Yorke dimension. In addition, adaptive synchronization 

scheme of new chaotic systems is shown via adaptive control approach. Furthermore, an electronic 

circuit realization of the new chaotic system using the electronic simulation package MultiSIM 

confirmed the feasibility of the theoretical model. 
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Figure 5 Circuit design for new chaotic system (1) by MultiSIM 
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(b) 

 

 
 

(c) 

 

Figure 6 The phase portraits of new chaotic system (1) observed on the  

oscilloscope in different planes (a) x-y plane, (b) y-z plane  

and (c) x-z plane by MultiSIM 
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